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Summary

In this white paper, we present and full document the KNIME Model
Factory, designed to provide you with a flexible, extensible and scalable
application for running very large numbers of model processes in an
efficient way. The KNIME Model Factory is composed of an overall
workflow, tables that manage all activates and a series of workflows
and data for learning.
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The KNIME Model Factory is available via the KNIME examples server
and can run on the KNIME Analytics Platform, which means it is open
source and free. Major benefits can be realized in terms of automation
and interfacing by using the KNIME Model Factory with KNIME Server.
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Figure 1.

Workflow for model
process management

All workflows, tables and sample
datasets are available for
download from the EXAMPLES
Server under 50_Applications/
26_Model_Process_Management
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Background and the Business Challenge

The benefits of using predictive analytics is now a given. In
addition, the Data Scientist who does that is highly regarded but
our daily work is full of contrasts. On the one hand, you can work
with data, tools and techniques to really dive in and understand
data and what it can do for you. On the other hand, there is
usually quite a bit of administrative work around accessing data,
massaging data and then putting that new insight into production
- and keeping it there.

In fact, many surveys say that at least 80% of any data science
project is associated with those administrative tasks. One
popular urban legend says that, within a commercial organization
trying to leverage analytics, the full time job of one data scientist
can be described as building and maintaining a maximum of four
(yes 4) models in production - regardless of the brilliance of the
toolset used. There is a desperate need to automate and scale
the modelling process, not just because it would be good for
business (after all, if you could use 29000 models instead of just
4, you would want to!) but also because otherwise we data

scientists are in for a tedious life.
Figure 2.

CRISP diagram for
explaining the
modelling process.
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A good description of the modelling process comes from CRISP.
That describes very well the process we manually walk through
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in doing data science to apply to a particular problem or focus
area. If you think of CRISP as a process, it would look like this:

If we are going to scale to have many processes, it is these steps
we must concentrate on automating and making extremely
efficient. In the market today are a number of attempts at “model
management” that fall into three categories:

In KNIME, the concept of a process is inherent to its design:
everything is a flow of tasks and the model process in its simplest
form in KNIME might look like this:
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And as any KNIME user knows, we can make this as robust as
we like, either by coding sequences of nodes or by collapsing
that complexness/robustness into Metanodes:

Load Transform Learn Score Evaluate Deploy

N\
Load Transform / Score Deploy
> \, -
b————= = ——» > —»
> »

But one of the major challenges of ANY package (including
KNIME) is that step where we evaluate then decide our
modeling process is good then deploy that model in some
way so that it can be used.

Copyright © 2017 by KNIME.com AG all rights reserved

Open for Innovation @

KNIME

Figure 3.

CRISP diagram as a
straightline process

Figure 4.

Simplest example of a
model process in
KNIME

Figure 5.

Robust example of a
model process in KNIME
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As a first step, the evaluation process is always a manual one
as we carefully evaluate our work and assumptions before
coming to a conclusion. When we move our model into
production by deploying it, we have the additional challenge
that a model may deteriate over time. By default, we then
set up to manually recheck the model occasionally and - if it
falls below some threshold - we can retrain a new model to
take its place.

Manual retraining .... How about Automated? Figure 6.

A model can deteriate over
time. Normally, one would

manually retrain. But we
can use KNIME to

= — automatically retrain.
0 1 2 3 4 5 6 7 8 9 10
Time in Weeks
However, we can use the power of KNIME to automate the
checking and retraining of the model. That might look like
this:
Load Transform Learn Score Evaluate Deploy Figure 7.
Example of
cearn automated retraining

P * of a model in KNIME.

Load Transform Score Evaluate Deploy
. N N > R
L N > > »
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KNIME as Metadata and KNIME Model Factory Concepts

Up until now, we have looked at one workflow that
represents one modeling process. The KNIME platform itself
has something far more important to offer for model
management: the fact that KNIME is script-free means that
everything in KNIME is defined and driven by metadata.
From nodes and metanodes through workflow control and
on to decisions about workflow execution and notification,
absolutely everything in KNIME can be represented and
controlled via its metadata.

That means we can extrapolate our simple model process
workflow away from the GUI visual of the workflow and
instead represent it as a table of metadata that describes
that exact same workflow. And, of course, if we can do it
once we can do it for multiple model processes, which give
us the ability to manage and control everything via a
workflow that manages such a metadata table. That is the
basis for the KNIME Model Factory.

Before diving in to the KNIME model factory itself, there are
some key KNIME Model Factory concepts to understand:

PROCESS STEPS: The process steps are the smallest logical
pieces that need to be defined for a complete abstract
modelling process to occur. In KNIME, we define each
process step as a specific standalone KNIME Workflow. Each
of those well-defined KNIME workflows knows how to work
with each of the other process steps. The seven process
steps are:

Figure 8.
INIT LOAD TRANSFORM LEARN SCORE EVALUATE DEPLOY

The process steps of an
abstract modelling
process. In KNIME,
these would each be a
standalone KNIME
workflow.
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These PROCESS STEPS are associated with specific tasks in
the abstract model process. A brief description of each
PROCESS STEP is provided here:

INIT - defines the variable parameters that would be
required for the other process steps

LOAD - takes information from INIT and know where and
how to load data for further processing.

TRANSFORM - Not only manipulate, transform and blend
data but would also set up training and testing data.
LEARN - Does the actual training of one (or more) models
SCORE - Scores the models created in LEARN on the
testing data

EVAULATE- Makes the decision of whether a particular
model satisfies tolerance criteria

DEPLQY - in its simplest form, does nothing since the
process of storing the model has already occurred within
the Model Factory. But in this step, we can also setup or
change the deployment method.

PROCESS DEFINITION: is the formal stored definition of the
7 PROCESS STEPS (and the associated KNIME Workflows)
that would define a complete model process. Every PROCESS
DEFINITION will always have all 7 PROCESS STEPS (even if for
some modelling processes some of the steps are in theory
empty workflows that perform nothing).

There would be one PROCESS DEFINITION for each type of
analytic problem. For example, if you have three business
topics, there would be three PROCESS DEFINITIONS:

Process Definition: Figure . 9
Process 1 (“Customer Seg”) [ ] [ womp | [ rmassror | [T earn ] [Tscore | [ evaruare | | oerov | There will be one
Process 2 (“...”) - | manscoma | [ wearn | | score | | evawvare | PROCESS
Process 3 (“Churn Pred.”) [ | o] [Crovson | EPLOY DEFINITION for

each type of
analytic problem.

Note that a very important concept is that a PROCESS
DEFINITION can reuse a PROCESS STEP. In the example
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above, all processes use the same EVALUATE step, however
they differ in the other steps. We have now defined
processes and the workflows associated with them but they
are still not attached to the data and the task to be done.

MODEL PROCESS CONFIGURATION: this is where you
associate PROCESS DEFINITIONs with concrete business
topics, specific data and any other necessary parameters.
You might have many products that used one PROCESS
DEFINITION. There would then be one model Process
Configuration for each product/process combination:

Modeling Process Configuration:

Productl Processl (parameters...) [ wr | [ om0 | [[rewsrom | [TiEaen. | [SG0REN [evaware | [ oerov |
Product2 Processl (parameters

.-)
)
Product3 Processl (parameters...)
o)
o)
)

T | | _toap | [ manscoma | [ iearn | |score | | evawate | [ oeprov |

|
[wr ] [romo | [Crmawseon | [iemnn | [score | [[evaware ] [ oeiov |

Topic4 Process2 (parameters

Topic5  Process2 (parameters D oo | [Ceean | [score ] [ evaware |
Topic 6  Process3 (parameters...) [ mwr | [ toao | [[massrona | [ ]

MODEL: A model is the structure of the analysis result
created and then store from within our complete model
process. Within KNIME, a model is just another type of data
that can also be defined by its metadata. A model is stored
and available to other relevant PROCESS STEPS.

With these basic definitions, we can now describe in detail
the KNIME Model Factory.

The KNIME Model Factory

Overall description

The KNIME Model Factory is a package of workflows, tables, templates
and definitions that, when combined with KNIME and in particular
KNIME Server, provides an extremely robust and flexible yet highly
scalable environment for model process management. It assumes that
in a constantly running steady state:

- data will constantly be changing
- many existing models will need to be tested against
more up-to-date data,
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A Process Configuration
will associate a concrete
business topic to a
Model Process
Definition.



- new models processes will need to be added possibly
even for focus areas where there is not enough data to
model

- Processed will need to be automatic, but also have the
ability to be manually started and

- Existing model processes will need to be occasionally
challenged by a new model process

The KNIME Model Factory takes care of all these cases. The KNIME
Model Factory will work with KNIME Analytic Platform on the desktop.
The examples we have prepared will all work on the desktop. This give
the KNIME user the capability to learn, test and expand on the
concepts.

But the real power of the KNIME Model Factory comes when it is
combined with the KNIME Server, which provides the sharing,
scheduling, interaction (via the WebPortal) and automation capabilities
necessary for a robust and scalable production environment.

Storing and Editing Metadata information

At the heart of the model factory are two tables that store the metadata
information described earlier. In addition, two tables are automatically
generated for capturing all models changes over time as well as all
evaluation statistics over time.

Process_Defintion Modelling_Configuration Models Evaluation_Table

Model_Name
Process_Name = Model_Name Model_Name
B Process_Name
Process_Name
Process_Name

User Defined
- User Defined UserDefined User Defined

In the example model factory, all 4 tables are saved in KNIME Tables
within the repository. You could alternately save these tables to a
database. In that case, you would simply modify the Model Factory
workflow to refer to those alternate tables.
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heart of the model
factory.



Process_Definition Table

The first table is the Process Definition table, which contains all
information necessary to define a process definition. As already
discussed, a process is defined by its steps, which are workflows
identified with a specific process step. To define a process, you first
define a Process name. You then need to define the 7 process steps
that make up that process definition. Each process step will be one line
in you process_defintion table. Below you see two processes definitions
that are defined in the process_definition table:

§ Process Name | S S¥P-T"P | g | ocation
|AirBNB RentApp Pre... [INIT fAirBNB fworkflows frentedAppPred fAirBnB_rentAppPred_01_Init
|AirBNB RentApp Pre... |LOAD fAirBNB fworkflows frentedAppPred/AirBnB _rentAppPred_02_Load
|AirBNB RentApp Pre... [TRANSFORM  [/AirBNBfworkflowsfrentedAppPred/AirBnB_rentAppPred _03_ET
|AirBNB RentApp Pre... LEARN [AirBNB fworkflows frentedAppPred/AirBnB _rentAppPred_05_Training
|AirBNB RentApp Pre... |[SCORE [AirBNB fworkflows frentedAppPred/AirBnB _rentAppPred_04_Evaluation

|AirBNB RentApp Pre... [EVALUATE /_Process_Step_Templates/workflows/Templates/06_Evaluate _take_firstRowaAndCell

|AirBNB RentApp Pre... |DEPLOY ?

_Template INIT /_Process_Step_Templates/workflows/Templates/0 1_Init
_Template LOAD /_Process_Step_Templates/workflows/Templates/02_Load
_Template TRANSFORM |/_Process_Step_Templates/workflows/Templates/03_Transform
_Template LEARN /_Process_Step_Templates/workflows/Templates/04_Learn
_Template SCORE _Process_Step_Templates/workflows/Templates/05_Score
_Template EVALUATE /_Process_Step_Templates/workflows/Templates/06_Evaluate
_Template DEPLOY /_Process_Step_Templates/workflows/Templates/07_Deploy

The seven steps are: INIT, LOAD, TRANSFORM, LEARN, SCORE,
EVALUATE and DEPLOY. We will later explain how the steps are used
and can be created using standard templates. For each step, we need a
location where we find the workflows that will be executed. For a locally
running Model Factory, this can simply point to workflow locations. If
you are using the Model Factory in production, you will want to use
workflow related references so that the workflows are always found
irrespective of the physical location. This is how our model factory is
already built, everything is done in relation to the workflows. Hence, you
can freely shift this around. The table allows for a Description as well as
User Defined Parameters. These are all optional.

Modelling_Configuration Table

The modelling processes we have defined now need to be configured
for execution on specific data and topics. We do this in the
Modelling_Configuration Table. This is where we define the parameters
surrounding the actual modelling process. Below you see entries for
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Example process
definition table
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three model configurations. Notice that two of the configurations use the
same model process:

S Model_Initia

§ Process_Name lisation

S Update T § Challenger
‘ § Model_Name § Metric e vodel

D mreg-aa‘ $ W CurrentModel

§ Last_Execution | S Responsile

RMSD 0.5 |2017-03-06;20:25:26.650 _|Automatic __|CS_TV_000453 |? |2017-03-06;20:25:27.962 _|phil.winters@knime.com
RMSD 0.5 |2017-03-06;20:25:13.24 |Automatic all jal [2017-03-06;20:25:14.657 _|modelFactory @knime.com
lRmsn N17-NIN6ND4:54 74 |Automate Al ] MN17-NINAINIAGA 4% ImadelFactnry knime rom

(CS_TV_000049 |Product Price Tendence
|Washington, D.C |AirBNB Price Prediction Cities
AAAAA AirRNR Prica Pradictinn Ci

Model_NAME defines the specific modelling configuration. This will
always point to the specific item, product, topic or area of focus for this
modelling process sequence. A best practice is to use this name to
point to something specific within your data such as the specific target
value or segment you will be focusing on. In this way, you can write
your INIT workflows to automatically find prepare for selecting the
correct data for this specific topic.

Process_Name points to a Model Process that has already been
defined in the first table.

Metric tells you which metric is used for evaluation — this is for
documentation only, please make sure this is represented by your
EVALUATE step.

Threshold specifies the accuracy under which the model factory will do
a model retraining (by default, our example is set up for thresholds
below this value).

Current Model is a link to a model in the models table. The name of the
current model is always a timestamp, so you can directly see when the
model was learned. The current model as well as the Last Execution is
updated within the model factory.

Update_Type can be Automatic, Manual, Challenger, Single or missing.

e Automatic means that the model configuration will run
automatically every time the model factory is executed.

e |If Manual is chosen, only the evaluation of the model will
be done, but the model will not be retrained. You can
schedule a single retrain by changing the state to
Manual_Retrain. You want to choose manual if you only
want to monitor the performance of the model.

e |If Manual_Retrain is chosen, we will do exactly one retrain
of the data and afterward set the state back to Manual.
This retrain will be done independently of the evaluation.
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Example model
configuration table.
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e The Challenger type is similar to Manual in that it is not
done automatically and must be manually executed.
However, if the challenger execution of the process creates
a new model, it will be saved but will not replace a Current
Model automatically by the model factory. We will return to
this special case later.

e |If there is no Update_Type defined, hence, it is a missing
cell; this modelling configuration will be skipped by the
model factory. This allows you to build model
configurations and save them within the model factory,
even if they are not being executed

Model_Initialisation can be used to point to another Model Name for
initialization (i.e.: deciding what data to use, what to focus on, what
parameters to set, etc.) if it is not yet possible to create a Model - this
can happen when a new product or item appears but there is not yet
enough data for training/testing. In this case, the referenced
Model _Name modelling configuration will be executed. That modelling
configuration must exist already, as the model will be taken from it.

Challenger_Model points to another existing model process
configuration of type CHALLENGER, which can be compared using the
same model_name to the current process.

Last_Execution documents when the process configuration was last
executed.

Responsible should be an email address of the owner of the particular
process configuration.

Model and Evaluation Tables

The last two tables are fully generated during the execution of the
model factory. The first one is the models table.

I § Model_Name § Process_Name § Date_Model_Created § Model S Model_Type

IE_TV_008995 Product Price Tendence |2017-03-07; 16:38:48.36 knime://knime.workflow/../../../../.. /tmp/Train_2017-03-07T 16-38-47. 165.table |PMML
Empty_Template _Template 2017-03-07;16:30:17.97 knime: / knime . workflow /. f... ftmp/Train_2017-03-07T 16-30-16.325.table |PMML
2 _Beds AirBNB RentApp Predi... |2017-03-07; 16:30:07. 177 knime: /knime.workflow/../../.. /.. /.. /tmp/Train_2017-03-07T 16-30-06.527.table |PMML
>2_Beds AirBNB RentApp Predi... [2017-03-07; 16:29:58.936 knime: //knime workflow/../../../../../tmp/Train_2017-03-07T 16-25-58.722.table PMML

It contains a list of all models - both current and historical - which were
saved during the execution of the model factory. The model is marked
by the model name / process_name configuration from the
modelling_configuration table together with the date it was created
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(Date_Model_Created). In addition, we save a link to the actual model

(Model) and the Model_Type (KNIME or PMML).
The Last Table is the Evaluation Table.

[ | Figure 15.
' S Model_Name ‘ § Process_Name § Date_Model_Created S dMac;edel_Up D Value § Date 9
Example evaluation
[Empty_Template |_Template 2017-03-07;16:27:42.617 |Current 0.667 2017-03-07;16:30:15.174 | table
2_Beds AirBNB RentApp Prediction |2017-03-07;16:27:35.254 |Current 53.071 2017-03-07; 16:30:05.258
>2_Beds AirBNB RentApp Prediction |2017-03-07;16:27:31.450 |Current 1,678.614  |2017-03-07;16:29:58.257 |
>2_Beds AirBNB Price Prediction 2017-03-07;16:27:19.810 Current |2.549 2017-03-07;16:29:49.342
12 Beds AirBNB Price Prediction 2017-03-07:16:27:14.574 |Current 5.747 2017-03-07:16:29:31.807

It is fully maintained and filled by the model factory. It is filled each time
the evaluate node is executed. It will tell you to which modelling
configuration it belongs. And you can find the model by using the
Date _Model Created parameter. There is also a timestamp, when this
value was evaluated and of course the value itself.

All tables can be expanded with your own user defined fields but the
fields that are present should be left as-is to ensure correct execution of
the Model Factory.

The KNIME Model Factory

Abstract Model Factory Select Model valuate
el
End IF Score Ey

Vg < N SN

currentModel . Deploy

IF Switch B D End IF

CASE Switch

Init Load Transform Data (Start) Select Model End IF

= B B =% 'y g "
L Init Model Select Train Choice L L] L
1: existing 1 (re-Jlearn mode!
2. initialisation 2 nothing to do
3. leamn madel anly
Execute all Modelling Configuration
Get model Table Row To Select model Cleanup and collect  Loop End
configuration table  Variable Loop Start  process definition 'I} N
S
= .

The model factory is comprised of a KNIME workflow that provides two
specific activities. One part is a workflow that models a generic
modeling process with its 7 steps. The second part is a loop that reads
the model configuration table and loops over the abstract modelling
workflow part to execute a complete modelling process for each row in
the model configuration table.

In the screenshot above, the looping is done in the lower part of the
workflow. We read the model configuration table and use the Table

Copyright © 2017 by KNIME.com AG all rights reserved
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Row to Variable Loop Start node to start the loop. The loop will process
each row separately.

The Abstract Model Factory will only be run for those modelling
configuration with a non-missing status.

The loop is closed on the right side of the workflow. Before closing the
loop, we clean up some temporary tables produces by the Abstract
Model Factory.

Between the loop start and end is contained the Abstract Model Factory
portion of the workflow, which is contained in the upper part of the
workflow. The Abstract Model Factory is the heart of our modelling
process. We call it Abstract because it in and of itself cannot run a
modeling process- it simply defines the process. But when fed with the
information from one row of the model configuration table, it loads and
executes once across the 7 process steps we previously defined. In
addition to executing the modeling process, it captures and maintains
met information in the additional MODEL and EVALUATION tables we
previously described.

Overview of the Abstract Modeling Process Workflow

We will describe the KNIME process step workflows in detail in a
moment. At the moment, it is important only to remember that each
process step loads a physical workflow via the model configuration and
by extension the model process table.

When the Abstract Model Factory is started, at first the INIT node is
executed. The INIT is used to initialize parameters. For example, you
can set up the INIT workflow to initialize a pointer to the file you want to
read. You than might have three different INIT workflows, pointing to
three different file versions. Alternatively, you could point an INIT at a
specific target variable and a second INIT at another target variable.
The LOAD can then always be the same.

The LOAD step now gets as input all parameters provided by the INIT
Step. The LOAD is used to load and select the data. The result is
written into a temporary file, the file names are sent to the output and it
is called filePath.

The TRANSFORM workflow is the third in row. It takes the data from
the LOAD workflow, applies filters or does any other kind of
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preprocessing required to prepare the data for scoring and/or modelling.
As a last and required step, the data is split into training and test set.
This information is send back to the model factory.

Now we reach the first automatic decision. As a natural next step, we
would like to SCORE the possibly updated test data on our model,
which was learned in previous iterations. If this is the case, we take the
top port of the Case Switch node.

However, if there is currently no model in the modelling configuration for
us to use, we can use an initialization model, for example from a similar
product or a generic model where we DO have enough data. This will
be selected in the second path of the Case Switch. This model
initialization is defined in the modelling configuration table. Please note
that this have to have a modelling configuration with the same
Process_Name, which has a currentModel assigned.

For both paths, we have then selected an existing model. This model is
then sent together with the test data set path to the SCORE step. The
SCORE steps applies the model to the test data set and sends the
scored data back to the factory.

After scoring we use the EVALUATE step to evaluate the performance
of our model THRESHOLD defined in the Model Configuration table for
this model process. The EVALUATE will return a value for the chosen
metric. This is the key for deciding if the model will be retrained. It is
also within this metanode were we make the decision whether, based
on the METRIC value and the THRESHOLD, we retrain the model or
not. In this abstract model factory, we are retraining if the value
generated by the EVALUATE step is smaller than the threshold saved
in the modeling configuration. The evaluate step also saves the new
evaluated value into the Evaluation table.

Based on that decision, we either take the top portion of the IF node
when we retrain. The LEARN steps gets the training data. If the learning
is successful, the DEPLOY metanode will take care to write the model
into the models table. And it will also update the current model in the
modelling configuration table. If we do NOT decide to retrain, the
LEARN and DEPLOY metanodes are not executed.

Finally, as a last step all temporary tables are deleted and we update
the last execution timestamp of the modelling configuration. We have
now completed one actual execution of a complete model process.
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The KNIME Process Step Workflows

The 7 process step workflows follow a specific protocol aimed at
keeping them extremely flexible but at the same time working within the
Model Factory. To ensure the workflow communicate with each other,
we use JSON as the interface. That means every process step
workflow gets an input JSON and will produce an output JSON. This
JSON will contain all parameters for the workflow to run.

As each workflow needs an input, please note how the inputs are
generated for each of the 7 Workflows:

Step_Type Input Output
INIT All values from the respective Values the LOAD
modelling configuration Workflow needs to read

the file (e.g. a file path or
a filter criteria)

LOAD Everything provided by INIT filePath (to the loaded
file)

TRANSFORM filePath (from LOAD) filePath_Train (can be
missing)

filePath_Test

LEARN filePath_Train (from LOAD) modelPath
SCORE filePath_Test (from filePath
TRANSFORM)
modelPath (from models table
or LEARN)
EVALUATE filePath (from SCORE) value
DEPLOY modelPath (from LEARN) -

Each of the 7 process step metanodes described earlier knows how to
call workflows designed with the JSON protocol. Each metanode sets
up the INPUT parameters for each process step and then calls the
workflow via a Call Local Workflow node. At the end, the input and
output of each process steps is updated in the table. The output will be
reused in consequent steps, as described in the table above.
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workflows and their input

and output definitions.
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Note that while the sample Model Factory uses Call Local Workflows
(which will also work well on KNIME Server), it would be possible to
also swap these out for Call Remote Workflows.

Making Process Steps (workflows)

To make your own process steps to create your own model process
definitions, we would highly recommend that you use the templates
provided as they set up the appropriate JSON connections for you and
the other connections and basic logic to the model factory so you can
fully focus on your analysis. In the following description, we introduce
each template, show how you can edit them and show how they can be
effectively “skipped” if they are not required.

In all of the following graphics, the part in gray is where you should be
adding your own logic, analysis and workflow sequences to achieve
what you need to achieve within that step. Leave the yellow pieces as-is
to ensure your new process step will work within the model factory.

1. INIT

Framework. (Connection to Model Factory
Output to Model Factory

JSONInput  JSON to Table Table to JSON  JSON Output

o> > pE > 1 o ra

get parameters  convert them in convert table send table
from factory one table row into JSON back to factory

Customn (Your custom nodes for this step)

Column Filter
LEE

exclude all
(Send nothing back)

The INIT workflow is always the first in row. It is the only one which will
get parameters from the modelling configuration table. You would
typically use it to initialize parameters for the LOAD workflow. For
example, imagine you have two different data sets; both can be loaded
using the same methods. Than you could have two INIT workflow,
providing the LOAD workflow with the path of the file only. The LOAD
will take care of reading and processing the file. So you can use in your
process the same LOAD and only different INIT workflows. The INIT is
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not a mandatory workflow. You can skip it. However, then your LOAD
Step does need to know what you are loading.

2. LOAD

Framework. (Connection to Model Factory

Table Row
JSON Input JSON to Table to Variable

o> pEr bﬁ'-——-\

L
Node 1 Node 8 Node 9

Custom (Your custom nodes for this step) |
|

|
|
\
\Ta hl.e Creator
i) L »

Read a table here
(The path might be provided
by the Init Workflow)

Output to Model Factony

String Input FileName_creation

g e ® )
= / Variable to
LOAD Table Writer  Table Row Table to JSON JSON Output
¢ "
— o BB —>a
L L] L] L]
Node 5 Node 11 Node 12 Node 2

Row Filter
>
L

filter based

on INIT

The LOAD step is good when new data is available, a separate security
system is necessary for accessing data or there are multiple data
sources. It is not a mandatory workflow but in most cases, it will be very
useful. You can just return an empty table and do everything in the
TRANSFORM workflow but this will possibly decrease reuse later.
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3. TRANSFORM

Framework. (Connection to Model Factory

Table Row
JSON Input JSON to Table to Variable

Table Reader
——e
° g»
Node 1 Node 8 Node 9 L]
Node 10

Q> pEr e

Custom (Your custom nodes for this step)

any kind of preprocessing
can be applied here

The TRANSFORM workflow is mandatory. Normally the data will be
provided by the LOAD step. Alternately, you could access it here. In the
end, you need to generate a filePath_test and a filePath_Train so that
the data is available for testing and scoring. Those point to files
containing the respective parts of your data. If you do not have training
data available, maybe because there is not enough data, you can
simply set filePath_Train to missing. The model factory will not execute
the learning, but will wait until a filepath is provided in one of the next
executions of the model factory either as you manually set it or as your

workflow logic provide it.
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TRANSFORM workflow
template
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4. LEARN

Framework. (Connection to Model Factory
Qutput to Model Facton

Table Row
JSON Input JSON to Table to Variable Slr;ng Input FileName_creation
-
Table Reader (
ar >R P e —T0 | Qe L o
By \ /
— =2 N \ =D /
Node 1 Node 8 Node 9 ® | TRAIN Jable Writer
| e =
Node 18 | Sstring Input
/
o/
s []
Node 24

Model file extension

Custom (Your custom nodes for this step)

GroupBy

y,
g
L]
Node 23

\

Variable to

Table Row Table to JSON

S kY
o &g »

L]
Node 13

> B>

L]
Node 14
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The LEARN step is mandatory. It will get the filePath_Train containing
the training data and will output the path to the model. This model can
be written in any format, as we will save the full file for deployment later.

5. SCORE

Framework. (Connection to Model Factory
Output to Model Factory

Table Row
JSON Input JSON to Table to Variable String Input FileName_creation
a» > B> > & 7 [e o
\
=4} | ) ‘
Node 1 Node 8 /.’/Nude 9 Table Reader SCORE
& —e
le Read:
'Izafx'e eader E_. —_— o

B p—

= N\ o1 \ / ®
@ \ Data \ Node 5
Model

Custom (Your custom nodes for this step)

( \
| Column Rename|
\ (Regex)

Cross Joiner

\ — > /
\ & r—
e (] >
= [
Node 24
Node 25
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Figure 21.
LEARN workflow
template
JSON Output
» ol
L]
Node 2
Figure 22.
SCORE workflow
template

JSON Output

ra
L
Node 2
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The SCORE step is mandatory. It will get the filePath_Test and a
modelPath. Afterwards it should apply the model on the test data for

prediction.

6. EVALUATE

Framework. (Connection to Model Factory
Output to Model Factory

Table Row
JSON Input JSON to Table to Variable Tabl.e Reader

o » » P> >W0—/ B

Table to JSON
o a 20

Node 1 Node 8 Node 9 Data [ °
| Node 20

Custom (Your custom nodes for this step)

Variable to
Table Row  Column Rename |

Scorer
® O N3y » A1
— te

\ »
>
a > e =]
a Node 29 Node 30
Node 31

JSON Output

»a
L]
Node 2

The EVALUATE step is not mandatory. It can be skipped if you e.g.
already calculate the value in the score step. However, as the value is
expected from the EVALUATE step, you need to provide it with a simple
table (one line one row) containing only the value. The EVALUATE step
will then send this value as the evaluated value back to the model

factory for further processing.
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EVALUATE workflow
template
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7. DEPLOY

Framework. (Connection to Model Factory
Output to Model Factory

Tab wW

JSON Input JSON to Table to Variable
s

o> > P> PE‘\, &, » > B> >l

™ / / a o L]
Node 1 Node 8 Node 9 / Node 26 Node 27 Node 2

Table Reader
= ]

'I:ahl.e Creator  Table to JSON JSON Output

&, »

L]
Model

Custom (Your custom nodes for this step)

Column Rename /
(Rnge:ﬂir/_/
> s >

L ]
Node 25

Deployment is the last step in the data analytics process and so it is as
well the last step in our process. Independent of the DEPLOY step, any
model created by the Model Factory will be written to the appropriate
tables. This means that the “current model” will always be available by
another workflow or application. That is already one type of “deploy”.
But since there are so many other things you might want to do from
WITHIN the Model factory - such as scoring any new data, transforming
a model into another form for use, copying the model to the Cloud etc. -
then the DEPLOY step would be where you could do that. The
DEPLOY step is not mandatory, if you do not need it, just don’t add it to
your process definition.

One note: based on the Status of your modelling configuration, the
Deploy is not always executed. The DEPLOY step is only executed for
AUTOMATIC that are RETRAINED and MANUAL_RETRAIN.

One last word on the steps, the power of this whole step approach only
becomes clear when you start to to mix and match the process steps.
Reusing steps from other processes will simplify your life and will make
it easier to maintain. You will also see this in the examples.
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DEPLQY workflow
template
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Best practice for generating steps

If you are starting from scratch, it can be extremely helpful to have a
complete working workflow to use as the basis for creating the process
steps for your model process. Use workflow annotation to mark out the
seven process steps similar to what has been done in Figure 7. You
would use this completed workflow to then split into the seven steps.

We are using the capbility in KNIME for capturing and passing
information between JSON steps. @ The mechanism for doing that
requires that each step is created in order, as the input for a follow-on
step is dependent on the executed output of a previous step.

The INIT step will be created first. Copy and rename the INIT
Template and use it as a basis for creating your own INIT step. You
should be able to do this in the gray area in the example. When you
are finished, save and execute the INIT step. Output of your INIT step
is needed the first time for creating the LOAD step. Copy and rename
the LOAD Template. Now go back to your executed INIT step and
open the output from the Table to JSON node. In there, you will see
one row where one of the columns is a JSON column. Copy the
contents of that JSON column. Go back to your new LOAD workflow
and configure the JSON Input node by removing the brackets that are
there and pasting the contents of the JSON field you previously copied.
Save the node. You can now put your workflow components into the
LOAD step (again within the gray areay), save and execute the node.
This second step now has all the JSSON components it needs to be
used and reused later.

The procedure for each additional step is exactly the same. For the
next step in the sequence (TRANSFORM in our case), copy the JSON
field from the LOAD step and use that in the JSON INPUT node.

Some step Templates contain FileNameCreation wrapped nodes.
These generate unique temporary file names. When debugging, you
should never reset these nodes. Instead only mark and reset the
components in the gray area.

If you are done with your changes, reset all workflows and save them.
They can now be be used from the model factory.
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Model Factory Use Cases

It is important to think of the ongoing steady-state of the model factory.
At any time, you may have hundreds or thousands of model
configurations in the system for processing. We have selected a
number of use cases that all can be handled by the Model Factory.

Automated Threshold Checking

This is by far the most important use case because it saves so much
time, resources and saved false positives and negatives because of a
degraded model. If you have checked in many model configurations,
you want to check that the models have not deteriorated below their
threshold and the performance is therefore sub-optimal. This is handled
by the Model Configuration type AUTOMATIC with the specified
METRIC and a THRESHOLD.

By default, AUTOMATIC will be evaluated every time the Model Factory
runs. We will talk later about extending the model factory to include both
recency/frequency and scheduling.

Manual Threshold Checking

Occasionally you will have a model configuration that only needs to be
retrained on an “as needed” basis. But you would like to benefit from
the infrastructure provided by the Model Factory in capturing the
Evaluation over time. In this case, if the type is set to MANUAL then
evaluation always occurs but not TRAIN and DEPLOY. When you set
the type to MANUAL_RETRAIN, the model factory will run the Retrain
and - on end - reset the Type back to MANUAL.

New Product Model Generation

In many cases, you MUST provide a model (because a production
system requires it, for example) and a “missing” is not an option. In this
case, you can assign either a generic model or a “similar’” model so that
a model is available. This is done using the model initialization
parameter in the modelling configuration. Please be aware that this can
only work inside your current process definition. Hence, the initialization
needs to be a modelling configuration itself and has the same process
name.
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As data appears and that alternate model degenerates below the
THRESHOLD, a new model will be trained based on the real data
without intervention.

Champion Model Testing

For many organizations, they will have an existing model that may
occasionally be retrained. However, for some topics, the real data
science may continue and someone may come up with a totally
different model process (either preprocessing, algorithm changes or
whatever) that they think are better than the current model. Within the
model factory, you can have an existing model configuration point to a
champion model. You can then set up a separate champion model
configuration that can be manually run. The model is NOT automatically
replaced but instead a manual comparison can be performed. In an
ideal world, the evaluation process step will be the same between the
production and the champion model.

The Public Example

We have already described the KNIME Model Factory. That Model
Factory workflow along with the required tables are available on the
public examples server. To give you a better feel for how this whole
concept can be used inside KNIME, we have put two working use cases
online as well.

Use Case: AirBNB

The first one is based on data from AirBNB. The data is available for
free from Inside AiIrBNB (http://insideairbnb.com/get-the-data.html).
There is tons of data available, you can see the individuals’ apartment
information, information about the property owners and much more. We
here use only the calendar information. We have extracted calendar
information for all apartments for each day, which shows if an
apartment was booked, or not. The records also contain the price of
each apartment as well as apartment size information (2 Beds and > 2
Beds). This data is available in 6 datasets representing 6 specific cities
(The workflow that generated this data is available in the public
example if you want to extract and change the data).

For our use cases, we want to build two predictors. The first predictor
should model the prices of apartments and the second predictor should
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model how many apartments are available. In addition, we want to do

this for both small and large apartments so that we can compare.

For price prediction, we define a Model _Process with its seven steps in

Seattle that can be reused for either small or the large apartments.

The Model Process steps have been created and we have entered
them in our Model_Process table. To execute, we create 2 model
configurations entries, one called “2 Beds” or “>2 Beds”, which then will
run automatically in the Model Factory creating two price prediction

INIT As recommended earlier, the init takes the
model_name from the model_configuration table (either “2
Beds” or “>2 Beds”) and translates it into the Bin Number.
It also selects the file containing the price data for Seattle.
Note there is no data being transferred here, just the setup
and initialization of fields.

LOAD The load now loads the file, and, using the Bin
Number, filters it down to the selected data.

TRANSFORM Here we calculate a lag of the previous 7
days for each day. We also split out the 10 most recent
days as test set and use the rest as training data.

LEARN In the learn step we used this information to train a
linear and a polynomial regression model and
automatically return the one with a better fit on the training
data.

SCORE In the scoring we applied the model to our test
data. As we did not want to have a dedicated evaluate
workflow, the result table contained the RMSD of the
predicted prices against the true prices.

EVALUATE We did not use a dedicated evaluation
workflow here, but just returned the value from the score
workflow.

DEPLOY We did not include deployment here since the
Model factory saves the model automatically and we are
not taking further steps to deploy.

models for Seattle.

Up next, we create the seven steps for the prediction of the number of

small and large free apartments.

These are the seven steps for the prediction apartments in Seattle.
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e INIT The init takes the model name (either 2 Beds or
>2Beds) and translates it into the Bin Number. In addition it
selects the file, containing the free apartment data for
Seattle.

e LOAD same as price prediction

e TRANSFORM No preprocessing was necessary, soO we
only split the 10 most recent days as test set, while the rest
was the training data.

e LEARN The model was a simple mean of the training data.

e SCORE The score was as well the mean, and we directly
output the RMSD

e EVALUATE same as price prediction

e DEPLOY We did not include deployment here.

After saving these KNIME process steps, a Model Process is defined
and two model process configurations, again with the names 2 Beds
and >2Beds, which this time point to the Model process we just created.

Up until now, we are focusing only on the Seattle Data. However, of
course, it would be nice to have that information for the other cities as
well. That is why we extended the AirBNB Dataset to include other
cities as well (overall and not broken down by small/large).

We simply need to either copy and modify a minimum number of steps
or reuse process steps we already have. In our case, two change:

e INIT The init takes the Model Name, which now should
refer to the City and returns the location of the calendar
data file. It does not need the binning/filter part used
previously, since we are not processing on small and large
apartments.

e LOAD Read the file, as provided by INIT.

And that’s it, the other five steps can be reused from our previous
process definition. We would then define the Model Process, pointing to
the 2 new Process Steps and simply pointing to the other 5 existing
process steps.

We have 5 additional Model Configurations, named for each city,
pointing to the new process model.

A possible extension to these examples could involve catering for both
City AND Apartment Size. This could be done either by have a
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combined Model_Configuration name containing both the City and the
Size (for example: Seatle 2Beds) or by expanding the model
configuration table with an extra field. Either way, you take care of the
assignments in a special INIT model process workflow.

Use case: Product Data

The next use case is for predicting prices of different products. The
provided dataset has anonymized product names for 6 products, one
price per product per day. We here do not want to predict the real price
but only the price tendency indicating if the price will go up, down or is
stable currently. The following process steps were defined.

e INIT The init takes the product name and forwards this to
the LOAD workflow

e LOAD Read the product data and filter it down to the
selected product only.

e TRANSFORM The Transform calculates the difference to
the 1.1.2010, to change the date into a number. Afterwards
it outputs the 10 most recent days as test and the
remaining days as training data.

e LEARN The model is based on a linear regression. Based
on the rise of the curve and the error of the linear
regression, we than predict if the curve is going up or
down, or is currently stable.

e SCORE The scoring applies the linear regression model on
the test data and appends the trend as calculated in the
learn step.

e EVALUATE For being able to evaluate if the model is still
in the same trend, we calculate the trend for the test set as
well. The evaluation is 1 if the trend is the same and O if
the trend changes.

e DEPLOY We did not include deployment here.

A model process is defined and then one model configuration for reach
product.

A possible extension to this example could be identifying new products
and automatically creating model_configuration entries for those new
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products without the need to manually create them. Since a new
product would not have enough data to train, in the INITIALIZATION
workflow we could point to an existing model_configuration that would
be used for that new product.

KNIME Model Factory Directory and examples

Everything you need to run the KNIME Model Factory is available on
the public examples server of KNIME:

a [7] 26_Model_Process_Management
a [ Factory
A% _Configuration_Template
£ Model_Factory
a [ helperWorkflows
s [ tempDataCopies
A% SetThresholdsToMedian
£ Webportal_CheckState
£ Webportal_Seedll
£ Webportal_Update
£ Webportal_Update_Type_Change
4[] Metainfo
A% Create_Log_Tables
A% Edit_Tables_Locally
ﬁ_. Evaluation_Table.table
ﬁ_. Modelling_Configuration.table
ﬁ_. Models.table
ﬁ_. Process_Definition.table
4 [ Process
» [ Metanodes
s [T _Process_Step_Templates
- [T AirBNB
» [T AirBMB_Cities
> [ Products

Under the high level Model Process Management directory you will
find:
Factory

Model_Factory: the Model Factory Workflow. This workflow can
be used locally or with the KNIME Server

_Configuration_Template: a workflow used by the
Model_Factory. Do NOT change or remove this workflow

HelperWorkflows

tempDataCopies: A directory containing temporary copies of
data tables used in the examples above
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SetThresholdsToMedian: an example workflow that can be
used to do a learning of the threshold to automatically determine
when a model should be retrained.

Webportal _CheckState,Webportal_SeeAll,Webportal _Update

Webportal_Update_Type_Change: Sample Webportal
workflows. You will need to have access to KNIME Server to use
these.

Metadata

Process_Definition.Table
Modelling_Configuration.Table
Evaluate_Table.Table
Models.Table

The KNIME tables as described here in the white paper

Create_Log_Tables: a workflow for reinitializing the 4 Model
Process Tables.

Edit_Tables_Locally: a workflow for editing the tables locally if
you are not using KNIME Server and the KNIME Webportal

Process
_Metanodes: shared metanodes used by the various workflows

_Process_Step_Templates: the 7 process step templates
described above.

_AirBnB: all KNIME Process step workflows and data needed
for both
the price prediction and occupancy prediction for Seattle

_AirBnBCities: all KNIME Process step workflows and data
needed for
the cities example

_Products: all KNIME process step workflows and data needed
for the product
price prediction
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Deploying the Model Factory in Production

The Public Example workflows we are providing here can be run free of
charge using the KNIME Analytics Platform, with at least version 3.2.
For running the call local workflow node, you will need a personal

productivity license. This is also free of charge; you only need to
register for it.

However if you want to fully automate this as well as have a convenient
interactive Web-based environment for maintaining the KNIME Model
Factory, you will want to use the KNIME Server.

£ Node Repository [#5 KNIME Explorer £3 mo =l 6 dell L2 =
Server Execution Options >

Execute workflow on server

Standard job options | Scheduling options

[“] Schedule job

First execu‘tionl 3/ 82017 B~ || 1:59 PM =
v [[] ModelManagement (] Last execution | 3/ 8/2017 |[ 1:59Pm .
v [T Factory
™ tempDataCopies [ Repeat execution
A\ Model_Factory =
4% Simulation Repeat every ‘_1 ~] | days e

A4S THE_Model_Factory
A4\ Webportal_CheckState
A\ Webportal_Update_Type_Chang

Repeat job on selected days and months

Days of week | Days of month | Months

] Metainfo A4 Monday [ Tuesday [v] Wednesday
7 Models A Thursday Friday [J Saturday
™ Process (] Sunday

[ tmp

[[] Skip execution if previous job is still running
[T] Disable schedule
Next execution at Thu 3/9/17 1:59 PM

The KNIME server allows you to
» Schedule
* Check Status
+ Shared Repository
—  Workflows

— Metanodes
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Scheduling the model
factory to run on the
KNIME Server.

31



— Tables
— Data

* Versioning
» Security

Through the KNIME Webportal you can interactively create, update and
change as well as delete entries in the Model_Process as well as the
Model_Configuration Tables. Sample KNIME workflows are provided for
this.

It is the automation and collaboration features of the KNIME Server that
allow the KNIME Model Factory to be used to its fullest.

Next Steps and Statement of Support

With the flexibility of the KNIME Model Factory, there are many things
that can be done. Because it has at its heart the Call Local Workflow
node, which can call any KNIME workflow, it provides an easy way to
mix and match with other tools such as Spark, other Databases or even
other REST based interfaces.

The KNIME Model Factory is provided as-is. Since we know it will be
very popular with users for building and extending, we suggest
questions, suggestions and ideas be shared in the KNIME Forum.
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